MATH 2050C Lecture on 2/19/2020

Announcement: Problem Set 3 due this Friday (Feb 21). Recall: iR is a complete ordered field. (Existence? See Rudin) Intervals (§ 2.5) · 4 kinds of bod intervals (Let a, b & R, a < b) open (a,b) := { x e R | a < x < b }) R closed [a,b] := $[x \in \mathbb{R} \mid a \leq x \leq b]$ $\rightarrow \mathbb{R}$ (a, b] := [x e i R] a < x < b } half open & closed $[a,b) := \int x \in i \mathbb{R} | a \leq x < b^{2}$ Define: Length (I) := b-a (<+∞) · 5 kinds of unbdd intervals (a,+∞) := { × ∈ ℝ | a< × }

Similarly, $[a, +\infty)$, $(-\infty, b)$, $(-\infty, b]$, $(-\infty, +\infty) = \mathbb{R}$

R

Note: ± 00 ∉ iR but just a symbol.

 $Q: When is S \subseteq \mathbb{R} \text{ an interval } : S = I_1 \cup I_2 \\ S = \{s_0\} \\ \underbrace{Non-examples:}_{Idea: "intervals" \approx "connected" pieces of \mathbb{R} }$

Thm: (Characterization of intervals) Let $S \subseteq \mathbb{R}$. Suppose (i) $\exists S_1, S_2 \in S$, $S_1 \neq S_2$ (say $S_1 < S_2$) (ii) If $X, Y \in S$, X < Y, then $[X, Y] \subseteq S$. Then, S is an interval. [Note: could be open/closed, bold/unbold]

Proof: We just treat the case that S is bdd. (Ex: unbdd. case) • Completeness of $R \Rightarrow a := infS$, b := supS exist in R. • (i) $\Rightarrow a \leq S_1 \leq S_2 \leq b \Rightarrow a \leq b$. • Claim: $(a,b) \subseteq S$ (i.e. $\forall x \in (a,b)$, we have $x \in S$) Pf of Claim: Let $x \in (a,b)$. · X>a => x is NOT a lower bd =) ∃S'eS s.t. <mark>S'<×</mark> · x < b => x is Not an upper bol \Rightarrow \exists s["]eS st × < s" So, $x \in (s', s'') \subseteq S$ by (ii). In particular, $x \in S$. · Therefore, we would that S is one of the following: (a,b) or [a,b) or (a,b] or [a,b] • 🖸 Thm: (Nested Interval Property) Let In := [an, bn], n e N, be a "sequence" of closed & bdd intervals and they are "nested" : $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots \supseteq I_n \supseteq I_{n+1} \supseteq \cdots \cdots$ Then, $\bigcap I_n \neq \phi$ Furthermore, if \inf_{n} Length $(I_n) = 0$, then $\bigcap_{n=1}^{\infty} I_n = \{ \}$. Picture: E.g.) In == [0, +] $[0] = \bigcap_{n=1}^{\infty} I_n := \{x \in \mathbb{R} \mid x \in I_n \forall n\}$

$$\underbrace{E.g.}_{n=1} \quad I_{n} := \left[0, 1 + \frac{1}{n}\right]. \qquad \bigcap_{n=1}^{\infty} I_{n} = \left[0, 1\right] \neq \phi$$

$$\underbrace{Non - E.g.}_{n=1} \quad \bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right) = \phi \quad open interval$$

$$\underbrace{I_{1} \quad 1 \quad 2 \quad x}_{n=1} \quad I_{2} \quad x \quad I_{1} \quad 1 \quad 2 \quad x}_{n=1} \quad R$$

$$\underbrace{Non - E.g.}_{n=1} \quad \bigcap_{n=1}^{\infty} \left[n, \pm \infty\right] = \phi$$

$$\underbrace{unbdd}_{n=1} \quad unbdd$$